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Abstract: A concisc synthesis of two diastereoisomeric diterpenoid acid glycerides, 1a, previously
isolated from the skin of some dorid nudibranchs, and 3, via 13E-labd-8(9),13-dienic acid 4, is
described. Copyright © 1996 Elsevier Science Ltd

Nudibranchs are marine molluscs that have elaborated a series of defensive strategies 2 to compensate for
the loss of the shell. These molluscs often contain in their mantles unusual chemicals that could play a defensive
role against potential predators 34 and that also possess other biological functions, Many dorid nudibranchs
belonging to the genera Archidoris, Doris and Austrodoris contain in their mantles diterpenoid acylglycerolsS-11
toxic to fish but also activators of protein kinase C and very active in the regenerative test with the fresh water
hydrozoan Hydra vulgaris.1? These molecules are most likely biosynthesized de novo by the molluscs.® Very
surprisingly diastereoisomeric acylglycerols, esterified in position 1-sn by antipodal diterpenoid acids, have
been isolated from geographicaily distinct populations of Archidoris nudibranchs.8 Archidoris suberculata (N.
Spain) contains the same series (1a-c) of metabolites previouslyS isolated from A. montereyensis, whereas
Archidoris carvi (S. Argentina) contains two acylglycerols (2b-c) characterized, at position 1-sn, by a
diterpenoid acid enantiomer of that at position I-sr of 1a-c. The enantiomeric relationship between the
diterpenoid acids of the two series of acylglycerols was suggested both by slight but diagnostic differences
observed in the 'H-NMR spectra for the resonances assigned to Hp-21 and by opposite but identical CD
profiles.®

ia Ry=Ry=H 2a Ry=Ry;=H 3
1b R, = H; Ry = Ac 2b Ry =H; Ry = Ac
1C Ry =Ac;Ry=H 2c Ry =Ac;Ry=H

In order to confirm the suggested structures, the first synthesis of 1a and that of its Ca3 epimer 3,
enantiomer of 2a, via 13E-labd-8(9),13-dienic acid 4, has been performed. The last compound has previously
been prepared in live steps '* from sclareol 5. Superacidic cyclization 13 of 4 (ratio 4 : FSO3H = 1:5 mmol, i-
PrNO;, -78° C, 45 min) afforded in a good yield (92%) the wicyclic ent-isocopalic acid 6 14 {m.p. 177-1780C
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(from petr.ether), |alp -9.19 (¢ 0.3, CHCl3)}. The last compound 6 was transformed!3 [(COCI); - CgHes,
250C - 2h; 459C - 30 min] into chloride 7.16 Compound 7 was immediately coupled with (-)-2,3-O-
isopropylidene-sn-glycerol 8a (NaH, CH;Clz, 0°C, 20 min) and gave in good overall yield from 6 (80%) the
acetonide 9 17 {oil, [a]p -35° (¢ 0.25, CHCl3)}. Deprotection of 9 by 0.006 M solution of H,SO, in CH,0H
{r.t,, 2h) afforded the crystalline glycerol ester 1la (m.p.124-1260 C (from Et;0 - petr.ether), [a]p -54.3° (¢
0.3, CHCl3)} {lit.5: m.p.125-126° C; [a]p -12.5° (c 0.4, CHCl3)}. The spectral data (1H, !3C NMR and IR)

were identical in all aspects with those of the natural glycerol 1a.6
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Scheme: a. - FSO3H - i-PrNOy, -78° C, 45 min; b. - (COCl); - CgHg, 25° C (2 h); 45° C (30 min);
c. - 8a, NaH, CH,Clp, 0°C, 20 min; d. - 8b, NaH, CH,Cly, 0°C, 15 min; e. - H8O, - MeOH, 1. 1.

The sume synthetic approuch led to glycerol 3, which is the enantiomer of the natural glycerol 2a.8 The
chloride 7 was coupled with (+)-1,2-O-isopropylidene-sn-glycerol 8b (NaH, CH2Clz, 0° C, 15 min) and
afforded, after chromatographic purification on silica gel column (petr.ether - Et20 = 19:1), in good overall yield
from 6 (85%) the acetonide 10 18 [oil, {a]p -24.0° (¢ 0.4, CHCl3)]. Deprotection of the acetonide 10 in acid
conditions (0.006 M H,SO, - CH3O0H; r.t., 3.5h) afforded the glycerol 3 1% [m.p. 135-136° C (from Et;0 -
petr.ether), [a]p -51.8° (¢ 0.25, CHCl3). All spectral data (\H, 13C NMR and IR) were identical with those of
the natural glycerol 2a 8 with the exception of the CD spectra that display opposite profiles (3, negative
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maximum at 213.2 nm; 2a, positive maximum at 214.4 nm). In particular, the 1H NMR shape (fig.1) of the
protons at C-21 are sufficiently diagnostic to distinguish between the two diastereoisomers la and 3.

Fig. 1:
. U U b Partial '"H NMR spectrum (CDCls,
2 U 500 MHz) of 1a (a) and 3 (b).
ppm  4.30 425 4.20 415 4,10 ppm 430 425 420 415 410

In conclusion, the synthesis of the natural 1-diterpenoid acyl-sn-glycerol 1a and of its C;; epimer, 3-
diterpenoid acyl-sn-glycerol 3, was carried out in four steps via 13E-labd-8(9),13-dienic acid 4 in overall yields
64% and 69%, respectively. The high output of this short synthesis opens an easily accessible way to deeply
investigate the biological properties of acylglycerols esterified in position either 1-sn or 3-sn with diterpenoic
acids. Very recently, the first synthesis of marine terpenoid glyceride esters has been reported 10 to confirm the
structures of tanyolides A and B, two fish deterrent acylglycerols esterified in position 2-sn by
monocyclofarnesoic acid.
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6: (3) IR (liquid film) vipax 1715, 3500 cm-1, (b) 'H NMR (400 MHz, CDCl3, 8): 0.82 (s, 3H, CH3-18),
0.86 (s, 3H, CH3-19), 0.91 (s, 3H, CH3-20), 0.97 (s, 3H, CH3-17), 1.67 (s, 3H, CH3-16), 2.93 (brs, 1H, H-
14), 5.55 (br s, 1H, H-12).
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The compound 7 was used in the next step without purification. IR (liquid film) vmax 790, 1720, 1800,
2930, 3450 cm-1.

9: (a) IR (liquid film) vnax 860, 1050, 1160, 1210, 1730 cm"}. (b)!H NMR (400 MHz, CDCl3, 8): 0.81 (s,
3H, CH3-18), 0.86 (s, 3H, CH3-19), 0.90 (s, 3H, CH3-20), 0.94 (s, 3H, CH3-17), 1.37 (s, 3H, CH3 acetonide),
1.43 (s, 3H, CH3 acctonide), 1.60 (s, 3H, CH3-16), 1.92-1.99 (m, 2H, CH2-11), 2.96 (br s, 1H, H-14), 3.76
(dd, J = 6 and 8.5 Hz, 1H, H-23), 4.08 (dd, J = 6 and 8.5 Hz, 1H, H-23), 4.13 (dd, / = 5 and 6.5 Hz, 1H, H-
21), 4.19 (i, 1H, H-22), 4.31 (dd, J/ = 5 and 11 Hz, 1H, H-21), 5.51 (br s, 1H, H-12).

10: () IR (liquid film) vinax 850, 1060, 1170, 1220, 1735 cm"1. (b) 1H NMR (400 MHz, CDCl3, 8): 0.81
(s, 3H, CH3-18), 0.86 (s, 3H, CH3-19), 0.90 (s, 3H, CH3-20), 0.94 (s, 3H, CH3-17), 1.36 (s, 3H, CH3
acctonide), 1.43 (s, 3H, CH3 acctonide), 1.59 (s, 3H, CH3-16), 1.97-2.06 (m, 2H, CH2-11), 2.94 (br s, 1H, H-
14), 3.77 (dd, J = 6 and 8.5 Hz, 1H, H-23), 4.08 (dd, J = 6 and 8.5 Hz, 1H, H-23), 4.13 (dd, /= 6 and 10
Hz, 1H, H-21), 4.17 (m, 1H, H-22), 431 (dd, J = 6 and 12 Hz, 1H, H-21), 5.51 (br 5, 1H, H-12).

3: (a) IR (liquid film) vyax 1170, 1465, 1735, 2910, 3300 cm-1. (b) CD, [©]213 (EIOH) = -6.292. (c)!H
NMR (500 MHz, CDCl3, 8): 0.81 (s, 3H, CH3-18), 0.86 (s, 3H, CH3-19), 0.91 (s, 3H, CH3-20), 0.94 (s, 3H,
CH3-17), 1.60 (s, 3H, CH3-16), 1.91-1.96 (m, 2H, CH3-11), 2.16 (br s, 1H, OH), 2.51 (br s, 1H, OH), 2.96
(br s, 1H, H-14), 3.61 (dd, J = 5 and 11 Hz, 1H, H-23), 3.71 (d, J = 11 Hz, 1H, H-23), 3.94 (br s, 1H, H-22),
4.14 (dd, J = 7 and 12 Hz, 1H, H-21), 4.24 (dd, J = 7 and 12 Hz, 1H, H-21), 5.53 (br 5, 1H, H-12). (d)13C
NMR (CDCl3, 8): 39.86 (C-1, 1), 18.63" (C-20r C-6, 1), 41.87 (C-3, 1), 33.16 (C4, 5), 56.43 (C-5, d), 18.44*
(C-6 or C-2,1), 41.87 (C-7, 1), 37.41 (C-8, 5), 54.24 (C-9, d), 36.61 (C-10, s5), 22.63 (C-11, 1), 124.44 (C-12,
d), 128.44 (C-13, ), 62.56 (C-14, d), 173.53 (C-15, CO), 21.22 (C-16, @), 15.60 (C-17, @), 21.66 (C-18, q),
33.41 (C-19, ¢), 15.75 (C-20, q), 63.48 (C-21, 1), 70.33 (C-22, d), 65.10 (C-23, t). (¢) MS, m/z (relative
intensity, %): 378 (M+, 6), 363(3), 347(5), 286(43), 258(34), 243(28), 192(100), 177(98), 95(86).
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